碳/铬掺杂二氧化钛粉体的制备与表征#
摘要:采用球磨法合成碳、铬掺杂的氧化钛材料,碳、铬掺杂用于调节材料的氧空位缺陷度。应用X 射线衍射仪、紫外—可见分光光度计、荧光分光光度计等表征手段测试了样品的结构和光学性能。结果表明:碳、铬掺杂使材料的氧空位缺陷发生不同程度的改变。此外,对碳、铬掺杂的二氧化钛的可见光活性的来源作了相应解释。
关键词:复合材料;碳;铬;二氧化钛;氧空位;红移
0 引言
二氧化钛(TiO2)具有优越的光催化及亲水性能,在废水处理、空气净化、杀菌、防雾、自清洁等领域显示出广阔的潜在应用前景[1-3]。然而,TiO2 的带隙较宽,光响应范围局限于波长小于或等于387 nm 的紫外区,太阳能利用率低。光生电子—空穴易复合,寿命短,严重制约了TiO2 在光催化技术和亲水性能方面的广泛应用[4-5]。因此,为了提高TiO2 的光催化活性,改善亲水性,各国学者从制备技术、掺杂改性到催化、亲水机理对TiO2基半导体材料作了深入研究。
大量研究表明,TiO2 的光催化率和亲水性与氧空位缺陷度紧密相关。Kuznetson 等[6]提出非金属掺杂TiO2 的可见光催化活性源于氧空位缺陷引起的F 色心的出现。Meng 等[7]指出TiO2 表面氧空位的增加有助于增强光吸收,从而提高燃料敏化太阳能电池的光电转换效率。Serpone[8]证实了掺杂TiO2吸收边的红移与氧空位缺陷有关。Sangpour 等[9]采用射频反应磁控溅射制备了M-TiO2(M=Au, Ag, Cu) 薄膜,发现Cu-TiO2 由于更多的Ti3+氧空位的存在,对亚甲基蓝有最高的光催化降解率。Meng 等[10]应用射频磁控溅射分别在硅和石英基片上沉积了不同银含量的TiO2 纳米结构薄膜,发现薄膜的亲水性能随银含量的增加先增后减,最适宜的银含量为5.0vol%,源于表面Ti3+活性中心使薄膜表面的电子-空穴有效分离。
本文以含有Ti7O13缺陷态的TiO2为原料,采用球磨法对原材料进行碳或铬的掺杂改性。相关测试结果表明,碳或铬掺杂实现了对氧空位缺陷的可控性调节,扩展了氧化钛的光活性响应范围。这对氧化钛光催化及亲水性能的改进尤为重要,有利于满足氧化钛工业应用领域的不同需求。
3 结论
碳或铬掺杂样品光致发光谱强度的差异,表明了不同掺杂样品中氧空位缺陷的改变。通过碳或铬的选择性掺杂,氧化钛材料的氧空位缺陷实现了可控性调节。碳、铬掺杂样品在可见光波长范围内吸收谱强度的增加,源于不同态间电子跃迁和氧空位缺陷态的形成。
[参考文献] (References)
[1] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972,238(5358): 37-38.
[2] Meng F M, Lu F. Characterization and photocatalytic activity of TiO2 thin films prepared by RF magnetron
sputtering [J]. Vacuum, 2010, 85(1): 84-88.
[3] Meng F M, Xiao L, Sun Z Q. Thermo-induced hydrophilicity of nano-TiO2 thin films prepared by RF
magnetron sputtering [J]. J. Alloys Compd., 2009, 485(1-2): 848-852.
[4] Yu H G, Lee S C, Yu J G, Ao C H. Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers
[J]. J. Mol. Catal. A:Chem., 2006, 246(1-2): 206-211.
[5] Yu J G, Wang G H, Cheng B, Zhou M H. Effects of hydrothermal temperature and time on the photocatalytic
activity and microstructures of bimodal mesoporous TiO2 powders [J]. Appl. Catal. B: Environ., 2007, 69(3-4):171-180.
[6] Kuznetsov V N, Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of
Visible-Light-Active TiO2 Specimens Analysis and Assignments [J]. J. Phys. Chem. C, 2009, 113(34):15110-15123.
[7] Meng S, Kaxiras E. Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and
Systematic Trends [J]. Nano 135 Lett., 2010, 10(4): 1238-1247.
[8] Serpone N. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in
Second-Generation Photocatalysts [J]. J. Phys. Chem. B, 2006, 110(48): 24287-24293.
[9] Sangpour P, Hashemi F, Moshfegh A Z. Photoenhanced Degradation of Methylene Blue on Cosputtered M:
TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study [J]. J. Phys. Chem. C, 2010, 114(33):13955-13961.
[10] Meng F M, Sun Z Q. A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin
films deposited by RF magnetron sputtering [J]. Appl. Surf. Sci., 2009, 255(13-14): 6715-6720.
[11] Wu Y M, Xing M Y, Zhang J L, Chen F. Effective visible light-active boron and carbon modified TiO2
photocatalyst for degradation of organic pollutant [J]. Appl. Catal. B: Environ., 2010, 97(1-2): 182-189.
[12] Zhang J Y, Zhao Z T, Wang X Y, Yu T, Guan J, Yu Z T, Li Z S, Zou Z G. Increasing the Oxygen Vacancy
Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C, 2010, 114(43):18396-18400.
[13] Zhu J F, Deng Z G, Chen F, Zhang J L, Chen H J. Hydrothermal doping method for preparation of Cr3+-TiO2
photocatalysts with concentration gradient distribution of Cr3+ [J]. Appl. Catal. B: Environ., 2006, 62(3-4):329-335.
[14] Fan X X, Chen X Y, Zhu S P, Li Z S, Yu T, Ye J H, Zou Z G. The structural, physical and photocatalytic
properties of the mesoporous Cr-doped TiO2 [J]. J. Mol. Catal. A: Chem., 2008, 284(1-2):155-160.
[15] Chen X B, Burda C. The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped
TiO2 Nanomaterials [J]. J. Am. Chem. Soc., 2008, 130(15): 5018-5019.
[16] Zhang J Y, Zhao Z T, Wang X Y, Yu T, Guan J, Yu Z T, Li Z S, Zou Z G. Increasing the Oxygen Vacancy
Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C, 2010, 114(43):18396-18400.
[17] Das K, Sharma S N, Kumar M, De S K. Morphology Dependent Luminescence Properties of Co Doped TiO2
Nanostructures [J]. J. Phys. Chem. C, 2009, 113 (33): 14783-14792.
[18] Zhang W F, Zhang M S, Yin Z, Chen Q. Photoluminescence in anatase titanium dioxide nanocrystals [J].Appl. Phys. B, 2000, 70 (2) 261-265.
原创学术论文网Tag:
|